Federal Motor Carrier Safety Administration Office of Analysis, Research and Technology

Scope of the Motor Carrier Industry

715,000 Interstate Motor Carriers

7 Million Commercial Drivers

8.8 Million Large Trucks and 32,000 Motorcoaches

223 Billion Miles Traveled by Trucks

Source: 2008 FMCSA Statistics

Commercial Motor Vehicle Safety Challenges

CMV Fatality Rate (per total VMT)

Sources: 2008 National Highway Traffic Safety Administration; 2008 Federal Highway Administration

Crashes of all Severities

Sources: 2008 National Highway Traffic Safety Administration

FMCSA Technology Division Onboard Safety Systems Deployment

- Cost-Benefit Study
- Stakeholder Survey
- Industry Demographics
- Effectiveness Evaluation
- ◆ IntelliDriveSM Program
- Integrated Vehicle-Based Safety Systems (IVBSS) Program

What is the IVBSS Field Operational Test (FOT)?

- Cooperative agreement between the University of Michigan Transportation Research Institute (UMTRI) and the U.S. Department of Transportation (DOT)
 - Federal Motor Carrier Safety Administration (FMCSA)
 - National Highway Traffic Safety Administration (NHTSA)
 - Research and Innovative Technology Administration (RITA)
- Develop and field test integrated vehicle-based safety systems
 - Passenger cars and commercial trucks
- Almost 5-years in progress; \$34.2M program
 - \$25.6M from DOT, \$8.6M in cost share

Federal Partners

The IVBSS Team

Goals of IVBSS Program

- Integrate systems:
 - Lateral Drift Warning (LDW)
 - Lane Change/Merge (LCM)
 - Forward Crash Warning (FCW)
- Assess the systems for:
 - Safety benefits
 - Driver acceptance/ease of use
 - Willingness to purchase/marketability

Accident Problem

- Rear end, LCM and road departure crashes account for almost 50% of all motor vehicle fatalities in the U.S.
 - ≈ 60% of car crashes (19,100 fatalities/year)
 - ≈ 60% of truck crashes (1,100 fatalities/year)

The Vehicles

- Two fleets of vehicles
 - 16 cars (Honda Accord EX)
 - 10 trucks (International TranStar Class 8)

Key Research Questions

- Will the integrated system improve safety relative to individual warning systems?
- Do drivers understand and accept the integrated system?
 - Multiple threats and prioritization of warnings
 - Nuisance or false warnings
 - Effective driver-vehicle interface (DVI)
- How can integrated systems be tested objectively?

The Integration Challenge

- IVBSS evaluates integration from a variety of perspectives:
 - Enhanced performance of any one subsystem
 - Enhanced safety with multiple threats
 - Benefits of a fully integrated DVI
 - The role of the surrounding environment on a driver's decision to perform certain actions

Program Vehicles and Timing

Value of the IVBSS FOT

- Evaluate crash warning systems
 - Objective data:
 - System performance
 - System utilization
 - Accident reduction potential
 - Subjective data on willingness to buy and use
- Fundamental data on driver/traffic behavior
 - With and without the systems
 - Ability to address a multitude of questions

Integrated Warning System Operation

- LCM provides side object presence indicators to the driver and warnings of unsafe maneuvers
 - Provides directional side visual display and directional auditory display
- LDW tracks lane boundaries
 - Assesses threat of lateral departure and provides directional auditory warnings
- FCW provides headway warning and imminent collision detection
 - Provides collision warnings when a significant risk is detected, including stopped object detection

Arbitration and DVI Concepts of Operation

- Only warn for the most significant threat
 - Avoid contributing to driver errors, distraction, confusion, or information overload
 - Focus on supporting a timely and appropriate response from the driver

Heavy Truck Integration

Heavy Truck Sensor Coverage

Heavy Truck FOT Location/Drivers

- FOT was run out of Con-way terminal in Romulus, Michigan
 - Includes pickup and delivery (P&D) routes in Metro Detroit, and line-haul routes in Michigan's lower peninsula, Ohio and northern Indiana
 - Two shifts per day
- 20 drivers enrolled
 - 18 male drivers completed
 - 8 P&D
 - Avg. age 48; 18 years CDL
 - 10 line-haul
 - Avg. age 50; 25 years CDL

Heavy Truck FOT Data

- Objective data
 - Multi-CPU data acquisition system, turn key and unobtrusive
 - Full-time dataset describing:
 - Vehicle performance
 - Driver performance
 - Vehicle location
 - Driving environment
- Subjective data
 - Questionnaires and debriefings

Heavy Truck FOT Data

- Continuous data from IVBSS system, vehicle controller area network bus, and FOT sensors
 - 10 Hz to 50 Hz sampling rate
 - Hundreds of data signals
- Video from five cameras with adaptive frame rates and compression
- Audio

Heavy Truck Data Scope

- February 2, 2009 thru December 14, 2009
 - 2 months without and approx. 8 months with the integrated system
- ◆ Total distance recorded: 647,103 miles
 - 44,756 trips
 - 16,738 hours
 - 1 crash
 - 85,250 warnings heard
- Warnings heard dominated by lateral events
 - 2.9 per 100 miles for FCW
 - 2.0 per 100 miles for LCM
 - 12.3 per 100 miles for LDW

Objective Data Visualization

Subjective Results

Question	Overall		Pickup and Delivery		Line-haul	
	Yes	No	Yes	No	Yes	No
Do you prefer to drive a truck equipped with the integrated system over a conventional truck?	15	3	6	2	9	1
Would you recommend that the company buy trucks equipped with the integrated system?	15	3	7	1	8	2

Subjective Results

Next Steps

- Continue Data Analyses
 - Draft of Key Findings report about to be submitted
 - Continue work on a Methodology and Results Report
- Public meeting on October 20
 - Eagle Crest Resort, Ypsilanti, MI
 - All-day review of the IVBSS program
 - Vehicles on-hand

Contact Information

Jim Sayer, Ph.D.
University of Michigan
Transportation Research Institute
jimsayer@umich.edu

Chris Flanigan
Technology Division
Federal Motor Carrier Safety Administration

chris.flanigan@dot.gov

http://www.umtri.umich.edu/ivbss.php

http://www.its.dot.gov/ivbss/index.htm